123 research outputs found

    In-fixture calibration of an S-parameter measuring system by means of time domain reflectometry

    Get PDF
    We present a technique which resorts to the time domain capabilities of a vector network analyzer and to the network synthesia tools, in order to perform an in-fixture calibration of the S-parameter measurement system directly to the ports of the device under test. The effects of the customer's non ideal fixtures can be removed without requiring the insertion of standard components or particular loads, which can affect the calibration efectiveness. The inaccuracies due to the precision of the actual loads and to the connection repeatability are also avoided. Some simulation reeults demonstrate the very good capability of the technique. Experimental tests were also carried out on an actual microstrip transistor fixture, showing a very satisfactoty launcher modeling and de-embeddin

    Time domain reflectometry applied to MMIC passive component modeling

    Get PDF
    The time domain facilities of a network analyzer, combined with the tools of network synthesis, were recently used for experimental modeling of discontinuities in an S-parameter measurement set, so as to allow the instrument calibration directly to the ports of the device under test. The technique proved to be very useful in those cases where the discontinuities, that lie before the unknown device, cannot be isolated by the usual calibration methods, and therefore, since network synthesis deals only with frequency domain information, it is impossible to optimize the model's parameters, since they are affected by errors due to discontinuities. This paper describes a procedure which allows to isolate the response of the device under test, and to derive its complete model; when it to reach a reasonable accuracy it gives anyway a topology, which is a good starting point for other optimization routines that can be used for obtaining a better match, on a broad frequency band. This can be accomplished by optimzing the first approach topology to which other circuit elements have been added, so as to take into account second order effects especially at the higher frequencies. The technique was applied to model and characterize passive discrete components used in MMIC. The experimental results show the validity of the approac

    Development and validation of in silico tools for efficient library design and data analysis in high throughput screening campaigns

    Get PDF
    My PhD project findings have their major application in the early phase of the drug discovery process, in particular we have developed and validated two computational tools (Molecular Assembles and LiGen) to support the hit finding and the hit to lead phases. I have reported here novel methods to first design chemical libraries optimized for HTS and then profile them for a specific target receptor or enzyme. I also analyzed the generated bio-chemical data in order to obtain robust SARs and to select the most promising hits for the follow up. The described methods support the iterative process of validated hit series optimization up to the identification of a lead. In chapter 3, Ligand generator (LiGen), a de novo tool for structure based virtual screening, is presented. The development of LiGen is a project based on a collaboration among Dompé Farmaceutici SpA, CINECA and the University of Parma. In this multidisciplinary group, the integration of different skills has allowed the development, from scratch, of a virtual screening tool, able to compete in terms of performance with long standing, well-established molecular docking tools such as Glide, Autodock and PLANTS. LiGen, using a novel docking algorithm, is able to perform ligand flexible docking without performing a conformational sampling. LiGen also has other distinctive features with respect to other molecular docking programs: • LiGen uses the inverse pharmacophore derived from the binding site to identify the putative bioactive conformation of the molecules, thus avoiding the evaluation of molecular conformations which do not match the key features of the binding site. • LiGen implemenst a de novo molecule builder based on the accurate definition of chemical rules taking account of building block (reagents) reactivity. • LiGen is natively a multi-platform C++ portable code designed for HPC applications and optimized for the most recent hardware architectures like the Xeon Phi Accelerators. Chapter 3 also reports the further development and optimization of the software starting from the results obtained in the first optimization step performed to validate the software and to derive the default parameters. In chapter 4, the application of LiGen in the discovery and optimization of novel inhibitors of the complement factor 5 receptor (C5aR) is reported. Briefly, the C5a anaphylatoxin acting on its cognate G protein-coupled receptor C5aR is a potent pronociceptive mediator in several models of inflammatory and neuropathic pain. Although there has long been interest in the identification of C5aR inhibitors, their development has been complicated, as is the case with many peptidomimetic drugs, mostly due to the poor drug-like properties of these molecules. Herein, we report the de novo design of a potent and selective C5aR noncompetitive allosteric inhibitor, DF2593A. DF2593A design was guided by the hypothesis that an allosteric site, the “minor pocket”, previously characterized in CXCR1 and CXCR2, could be functionally conserved in the GPCR class.DF2593A potently inhibited C5a-induced migration of human and rodent neutrophils in vitro. Moreover, oral administration of DF2593A effectively reduced mechanical hyperalgesia in several models of acute and chronic inflammatory and neuropathic pain in vivo, without any apparent side effects. Chapter 5 describes another tool: Molecular Assemblies (MA), a novel metrics based on a hierarchical representation of the molecule based on different representations of the scaffold of the molecule and pruning rules. The algorithm used by MA, defining a priori a metrics (a set of rules), creates a representation of the chemical structure through hierarchical decomposition of the scaffold in fragments, in a pathway invariant way (this feature is novel with respect to the other algorithms reported in literature). Such structure decomposition is applied to nine hierarchical representation of the scaffold of the reference molecule, differing for the content of structural information: atom typing and bond order (this feature is novel with respect to the other algorithms reported in literature) The algorithm (metrics) generates a multi-dimensional hierarchical representation of the molecule. This descriptor applied to a library of compounds is able to extract structural (molecule having the same scaffold, wireframe or framework) and sub structural (molecule having the same fragments in common) relations among all the molecules. At least, this method generates relations among molecules based on identities (scaffolds or fragments). Such an approach produces a unique representation of the reference chemical space not biased by the threshold used to define the similarity cut-off between two molecules. This is in contrast to other methods which generate representations based in similarities. MA procedure, retrieving all scaffold representation, fragments and fragmentation’s patterns (according to the predefined rules) from a molecule, creates a molecular descriptor useful for several cheminformatics applications: • Visualization of the chemical space. The scaffold relations (Figure 7) and the fragmentation patterns can be plotted using a network representation. The obtained graphs are useful depictions of the chemical space highlighting the relations that occur among the molecule in a two dimensional space. • Clustering of the chemical space. The relations among the molecules are based on identities. This means that the scaffold representations and their fragments can be used as a hierarchical clustering method. This descriptor produces clusters that are independent from the number and similarity among closest neighbors because belonging to a cluster is a property of the single molecule (Figure 8). This intrinsic feature makes the scaffold based clustering much faster than other methods in producing “stable” clusters in fact, adding and removing molecules increases and decreases the number of clusters while adding or removing relations among the clusters. However these changes do not affect the cluster number and the relation of the other molecules in dataset. • Generate scaffold-based fingerprints. The descriptor can be used as a fingerprint of the molecule and to generate a similarity index able to compare single molecules or also to compare the diversity of two libraries as a whole. Chapter 6 reports an application of MA in the design of a diverse drug-like scaffold based library optimized for HTS campaigns. A well designed, sizeable and properly organized chemical library is a fundamental prerequisite for any HTS project. To build a collection of chemical compounds with high chemical diversity was the aim of the Italian Drug Discovery Network (IDDN) initiative. A structurally diverse collection of about 200,000 chemical molecules was designed and built taking into account practical aspects related to experimental HTS procedures. Algorithms and procedures were developed and implemented to address compound filtering, selection, clusterization and plating. Chapter 7 collects concluding remarks and plans for the further development of the tools

    A Non-Intrusive Data-Driven Reduced Order Model for Parametrized CFD-DEM Numerical Simulations

    Full text link
    The investigation of fluid-solid systems is very important in a lot of industrial processes. From a computational point of view, the simulation of such systems is very expensive, especially when a huge number of parametric configurations needs to be studied. In this context, we develop a non-intrusive data-driven reduced order model (ROM) built using the proper orthogonal decomposition with interpolation (PODI) method for Computational Fluid Dynamics (CFD) -- Discrete Element Method (DEM) simulations. The main novelties of the proposed approach rely in (i) the combination of ROM and FV methods, (ii) a numerical sensitivity analysis of the ROM accuracy with respect to the number of POD modes and to the cardinality of the training set and (iii) a parametric study with respect to the Stokes number. We test our ROM on the fluidized bed benchmark problem. The accuracy of the ROM is assessed against results obtained with the FOM both for Eulerian (the fluid volume fraction) and Lagrangian (position and velocity of the particles) quantities. We also discuss the efficiency of our ROM approach

    Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs

    Get PDF
    Virtual screening is an early stage in the drug discovery process that selects the most promising candidates. In the urgent computing scenario, finding a solution in the shortest time frame is critical. Any improvement in the performance of a virtual screening application translates into an increase in the number of candidates evaluated, thereby raising the probability of finding a drug. In this paper, we show how we can improve application throughput using Out-of-kernel optimizations. They use input features, kernel requirements, and architectural features to rearrange the kernel inputs, executing them out of order, to improve the computation efficiency. These optimizations’ implementations are designed on an extreme-scale virtual screening application, named LiGen, that can hinge on CUDA and SYCL kernels to carry out the computation on modern supercomputer nodes. Even if they are tailored to a single application, they might also be of interest for applications that share a similar design pattern. The experimental results show how these optimizations can increase kernel performance by 2 X, respectively, up to 2.2X in CUDA and up to 1.9X, in SYCL. Moreover, the reported speedup can be achieved with the best-proposed parameterization, as shown by the data we collected and reported in this manuscript

    Radiation and Thyroid Cancer

    Get PDF
    Radiation-induced damage is a complex network of interlinked signaling pathways, which may result in apoptosis, cell cycle arrest, DNA repair, and cancer. The development of thyroid cancer in response to radiation, from nuclear catastrophes to chemotherapy, has long been an object of study. A basic overview of the ionizing and non-ionizing radiation effects of the sensitivity of the thyroid gland on radiation and cancer development has been provided. In this review, we focus our attention on experiments in cell cultures exposed to ionizing radiation, ultraviolet light, and proton beams. Studies on the involvement of specific genes, proteins, and lipids are also reported. This review also describes how lipids are regulated in response to the radiation-induced damage and how they are involved in thyroid cancer etiology, invasion, and migration and how they can be used as both diagnostic markers and drug targets
    • …
    corecore